a2 United States Patent

Molaro et al.

US009223654B2

US 9,223,654 B2
*Dec. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

RESILIENT DISTRIBUTED REPLICATED
DATA STORAGE SYSTEM

Applicant: DataDirect Networks, Inc., Chatsworth,
CA (US)

Donald J. Molaro, Cupertino, CA (US);
David Fellinger, Westlake Village, CA
(US); Adam Fried-Gintis, [L.ake Balboa,
CA (US); Dan Olster, Woodland Hills,
CA (US)

Inventors:

DataDirect Networks, Inc., Chatsworth,
CA (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Notice:

Appl. No.: 14/482,441

Filed: Sep. 10, 2014

Prior Publication Data

US 2014/0380093 A1l Dec. 25, 2014

Related U.S. Application Data

Continuation of application No. 14/136,254, filed on
Dec. 20, 2013, now Pat. No. 8,843,447, which is a
continuation-in-part of application No. 13/715,519,
filed on Dec. 14, 2012, now Pat. No. 9,122,699.

Int. Cl1.

GO6F 17/30 (2006.01)

GO6F 11/10 (2006.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6F 11/1088 (2013.01); GO6F 3/065

(2013.01); GOG6F 3/067 (2013.01);
(Continued)

(58) Field of Classification Search
GOG6F 11/1088; GO6F 11/1076; GO6F
11/108; GOGF 11/1096; GOG6F 3/0617; GO6F
3/0619; GOGF 3/065; GOGF 3/0665; GOGF
3/0637
USPC 707/640, 652, 690, 691, 821, 827
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,092,732 A 5/1978 Ouchi
4,761,785 A 8/1988 Clark et al.
(Continued)
OTHER PUBLICATIONS

le;.3qRodrigues et al., “High Availability in DHTs: Erasure Coding
vs. Replication”, Peer-to-Peer Systems IV 4th International Work-
shop IPTPS 2005 Published Feb. 2005, accessed May 9, 2013, http://
pmg.csail.mit.edu/papers/rodrigo_ IPTPS05.pdf.

(Continued)

Primary Examiner — Hares Jami
(74) Attorney, Agent, or Firm — SoCal IP Law Group LLP;
Mark A. Goldstein

(57) ABSTRACT

A resilient distributed replicated data storage system is
described herein. The storage system includes zones that are
independent, and autonomous from each other. The zones
include nodes that are independent and autonomous. The
nodes include storage devices. When a data item is stored, it
is partitioned into a plurality of data objects and a plurality of
parity objects are calculated. Reassembly instructions are
created for the data item. The data objects, parity objects and
reassembly instructions are spread across nodes and zones in
the storage system according to a policy for the data item.
When a zone is inaccessible, a virtual zone is created and used
until the intended zone is available. When a read request is
received, the data item is prepared from the lowest latency
nodes according to the reassembly instructions, and a virtual
zone is accessed in place of a real zone when the real zone is
inaccessible.

22 Claims, 10 Drawing Sheets

=610

[Receive read request for a data item]

=612

Determine location of data objects and parity objects
at lowest latency nodes needed to construct the data

item by referring to the information
614
Attempt to obtain the data objects and parity objects
for the data item
B /) - [616

YES

20

e

— Nodes not impaired™~~__NO
- and accessible? .
an gt

630

5!
Obtain data objects and parity objects from lowest
latency nodes identified in the reassembly
information

Determine location of data objects and parity objects
at not impaired and accessible nodes identified in the
[ion and obtain the objects

622

[—632

Construct data item from data objects and parity
objects obtained from lowest latency nodes identified
in the reassembly information

Construct data item from data objects and parity
objects obtained from not impaired and accessible
nodes identified in the reassembly information

40

[Provide the requested data item to the requester |

US 9,223,654 B2
Page 2

(52) US.CL
CPC ... GOGF 3/0617 (2013.01); GOGF 3/0619
(2013.01); GOGF 3/0665 (2013.01); GO6F
11/108 (2013.01); GOGF 11/1076 (2013.01);
GOGF 11/1096 (2013.01); GOGF 3/0637
(2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

5,208,813 A 5/1993 Stallmo
5,390,187 A 2/1995 Stallmo
5,504,892 A 4/1996 Atsatt et al.
5,758,153 A 5/1998 Atsatt et al.
6,154,853 A 11/2000 Keden
6,442,659 Bl 8/2002 Blumenau
6,658,439 B2 12/2003 Karasudani
RE39421 E 12/2006 Stolowitz
7,529,970 B2 5/2009 Hartline et al.
7,734,643 B1* 6/2010 Waterhouse GOGF 17/30067
707/770
8,606,958 B1* 12/2013 Evans AG63F 13/12
709/203
2001/0016841 Al 8/2001 Karasudani
2002/0178162 Al 11/2002 Ulrich et al.
2003/0115438 Al 6/2003 Mahalingam et al.
2004/0098383 Al 5/2004 Tabellion et al.
2004/0107314 Al 6/2004 Kim et al.
2004/0236769 Al 11/2004 Smith et al.
2005/0216502 Al 9/2005 Kaura et al.
2009/0106255 Al 4/2009 Lacapra et al.
2009/0198719 Al 8/2009 DeWitt
2010/0180153 Al 7/2010 Jernigan et al.
2010/0218037 Al* 82010 Swartzcooe.e. GOG6F 17/30
714/6.12
2010/0223495 Al 9/2010 Leppard
2011/0153977 Al 6/2011 Rootetal.
2011/0196900 Al* 82011 Drobychev ... GOGF 17/30082
707/812
2011/0214011 A1* 9/2011 Grube GOGF 11/1076
714/6.22
2011/0219048 Al 9/2011 Cross et al.
2011/0276622 Al 11/2011 Knapp et al.
2012/0030736 Al 2/2012 Resch et al.
2013/0346532 Al* 12/2013 D’Amato GOGF 3/0617
709/213

OTHER PUBLICATIONS

Huang etal., “FErasure Coding in Windows Azure Storage”, Microsoft
Corporation, 2012 Usenic best paper, accessed May 9, 2013, http://
research.microsoft.com/en-us/um/people/yekhanin/Papers/
UsenixATC__2012.pdf.

Gsoedl, “Inside object-based storage”, SearchStorage.com, article
published Jun. 2012, accessed Oct. 5, 2012, http://searchstorage.
techtarget.com/magazineContent/Inside-object-based-
storage?vgnextfmt=print, pp. 1-3.

Gsoedl, “Advantages of using an object storage system”, SearchStor-
age.com, article published Jul. 30, 2012, accessed Oct. 5, 2012,
http://searchcloudstorage.techtarget.com/tip/ Advantages-of-using-
an-object-storage-system?vgnextfmt=print, pp. 1-3.

Primmer, “Distributed Object Store Principles of Operation: The
Case for Intelligent Storage”, White Paper, Published Jul. 2010 by
Hitachi Data Systems, total of 20 pages.

Terrace et al., “Object Storage on CRAQ, High-throughput chain
replication for read-mostly workloads”, In Proc. USENIX Annual
Technical Conference, San Diego, CA, Jun. 2009, total of 16 pages.
Taylor, “Object-based storage promises scalability and flexibility for
static, unstructured data needs”, SearchStorage.co.UK, Apr. 11,
2011, total of 2 pages.

Slack, “Object-based storage for cloud storage: Product assess-
ments”, searchCloudProvider.com, published Oct. 26, 2010, 2 total
pages.

Slack, “Object storage: Object-based storage devices challenge file
systems for unstructured data sets”, SearchStorageChannel.com,
published Sep. 22, 2010, 2 total pages.

Carns et al., “Object storage semantics for replicated concurrent-
writer file systems”, journal, Argonne National Laboratory, accessed
Oct. 5, 2012, http://www.mcs.anl.gov/events/workshops/iasds10/
carns__iasds2010.pdf.

Factor et al., “Object Storage: The Future Building Block for Storage
Systems”, A Position Paper, IBM Haifa Research Laboratories, pp.
101-105, accessed Oct. 5, 2012, https://www.research.ibm.com/
haifa/projects/storage/objectstore/papers/PositionOSD.pdf.
Rackspace, Inc., “CloudFiles Introduction”, Jan. 24, 2011, 13 total
pages.

DataDirect Networks, Inc., “Web Object Scaler”, Brochure, Mar. 9,
2010, total of 4 pages.

Connor et al., “Cloud Storage: Adoption, Practice and Deployment”,
Storage Strategies NOW, Outlook Report, Published Apr. 4, 2011,
total of 112 pages.

Berriman, et al., Netapp Raid-DP: Dual-Parity Raid 6 Protection
Without Compromise, WP-7005-1006, Oct. 2006, pp. 1-11.
Celeros, Bringing SANity to Storage Costs, RAID White Paper, Jan.
2007.

Chen et al., RAID: High-Performance, Reliable Secondary Storage,
AMC Computing Surveys, vol. 26, No. 2, Jun. 1994, pp. 145-185.
DataDirect Networks, DataDirect Networks S2A9550: High-Perfor-
mance, Resilient Storage for High-Performance Computing (HPC),
White Paper, Sep. 2007, pp. 1-12.

DataDirect Networks, Best Practices: Enterprise SATA Deployment
with High Performance and Reliability, White Paper, Dec. 2007, pp.
1-12.

EMC, EMC CLARIiON Raid 6 Technology, White Paper, Jul. 2007,
pp. 1-14.

MPSTOR, RAID 50 Interleave, White Paper, Xtore Extreme Storage,
Nov. 2006, pp. 1-13.

Patterson, et al., A Case for Redundant Arrays of Inexpensive Disks
(RAID), Computer Science Division, Department of Electrical Engi-
neering and Computer Sciences, pp. 1-25.

Pivot3, Pivot3 RAIGE Storage Cluster, White Paper, Technology
Overview, Feb. 2007, pp. 1-18.

STORAGE, Best Storage Products of 2007, issued Feb. 2008,
accessed on Apr. 22, 2008, http://searchstorage.techtarget.com/
magazinePrintFriendly/0,296905,sid5__gcil1299110,00.html.
WinchesterSystems, Technology Update White Paper “Enterprise
RAID 6”, May 4, 2006, pp. 1-14.

Du, et al., Experiences Building and Object-Based Storage System
Based on the OSD T-10 Standard, DTC Intellient Storage Consor-
tium, University of Minnesota, 2006, pp. 1-11.

Moore, et al., Storage Resource Broker Global Data Grids, San Diego
Supercomputer Center, 2006, pp. 1-12.

Devulapalli, et al., Integrating Parallel File Systems with Object-
Based Storage Devices, Ohio Supercomputer Center, pp. 1-10.
Smolik, An Opject-Oriented File System—An Example of Using the
Class Hierarchy Framework Concept, Department of Computer Sci-
ences, University of Missouri—Rolla, pp. 33-53.

Olson, et al., Secure Capabilities for a Petabyte-Scale object-Based
Distributed File System, Storage System Research Center, Computer
Science Department, University of California, Santa Cruz, pp. 64-73.
Marsden et al., Improving the Usability of the Hierarchical File
System, Department of Computer Science, University of Cape Town
and University of Stirling, Proceedings of SAICSIT 2003, pp. 122-
129.

Gaffey, SGI’s Cluster File System—CXFS, File Systems Engineer-
ing, Apr. 9, 2000, slides 1-56.

Foster, Global data Services, Developing Data-Intensive Applica-
tions Using Globus Software, Computation Institute Argonne
National Lab & University of Chicago, slides 1-114.

Pollack et al., Efficient Access Control for Distributed Hierarchical
File Systems, University of California, Santa Cruz, slides 1-9.
Pollack et al., Efficient Access Control for Distributed Hierarchical
File Systems, University of California, Santa Cruz, 2005, Journal, pp.
101-108.

Shinkai et al., Alternative Implementations of Cluster File Systems,
MMS Conference, Mar. 2000, slides 1-16.

US 9,223,654 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Rogers et al., z/OS Distributed File Service zSeries File System
Implementation z’OS VIR11, Oct. 2009, Redbooks, IBM, Interna-
tional Technical Support Organization, Draft Document, Nov. 24,
2009, pp. 1-458.

Pike et al., The Styx Architecture for Distributed Systems, Comput-
ing Science Research Center, Bell Labs Technical Journal, vol. 4, No.
2, Apr.-Jun. 1999, pp. 1-11.
Welch et al., Object-Based Cluster Storage Systems, Panasas, Inc.,
May 25, 2006, slides 1-104.

* cited by examiner

US 9,223,654 B2

Sheet 1 of 10

Dec. 29, 2015

U.S. Patent

T 'O
0st1 0sT
4 / -
o’ \ e
| ost «, 0T
ovt ovT
| S10MIBN ! 0€T }JOMIBN |
| es1y 890 SOMIBN BaJY BPIM ,,, £a.y |80 ;ﬂ
0sT J
0sT
£ ,
Seuolg SPON
0ST 0sT
/(mmﬁopm

~ _0z1 auoz a5ei01S /\loﬁ auoz adelois

A

20T
W8I

/\log Ww21sAg 98el01S eleg paiedljday painglisia

US 9,223,654 B2

Sheet 2 of 10

Dec. 29, 2015

U.S. Patent

¢ 'Old

7 oot

\—05T apoN ageioig \—0ST apoN ageiois \—0ST @poN a8eJo1s

ort
JJoMmiaN ealy [ed0]

T \/wlvg auoyz adelols

US 9,223,654 B2

Sheet 3 of 10

Dec. 29, 2015

U.S. Patent

¢ Ol

!
|
|
|
I
!
| -E

//\Icmm auoz abeuoig

b€
SHOMIBN B3Iy SPIM

a _\,;/\Iomm auoz 3beio1s

/12m auoz abeiols

/]oom WNSAS abe.I0lS IR pRINqLISIq paledlidsy Ajind

US 9,223,654 B2

Sheet 4 of 10

Dec. 29, 2015

U.S. Patent

¥ 'DId
@ o}
L e /\Iomw auoz sbelols
/ 6 e Obb °
,_ e HHOMIDN 231y SPIM o e e
/,,,/ @ e | ,,,,/ a 6
/]omv mSN abeiols /\Io:q auoz abelols
y /\Ioo¢ WaISAS a6eJ0IS BlRQ paledday PsINqLISIQ JUSIISaY
Z0t
81D

US 9,223,654 B2

Sheet 5 of 10

Dec. 29, 2015

U.S. Patent

way ejep a3 404 Aoljod syl 01 buipiodoe
sauoz abelols Jayjo Buowe suondNIIsUl A|quiassesl
pue s19[qo Ajued ‘syoslqo eyep ayy Bulols ajeniul

09—/ 0

auoz abelo3s JuaLInd ay] Ul suoroniasul
Alquissseau pue syoalqo Aued ‘s109[qo eyep auj 24015

05—/ 1

_ US| e3eP BY3 40§ SUOIPNASUI A|QLUSSSES. 3)RaL)
obs—/ 1

_ wajl ejep ayj 4oy s1oelqo Ajued s1ean)
0e6—/ 1

_ s329[qo ejep ojul Wayl e1ep ay) uoniled
0es—/ T

_ way ejep e Buipnpul 3sanbau abelols e sAIedeY

01—/

S 'Old

US 9,223,654 B2

Sheet 6 of 10

Dec. 29, 2015

U.S. Patent

9 'Old

_ Ja3sanbal ayy 03 wayl eyep pagsanbal sy apInodd

0b9—/

%

uonewojul AquISSSeal au3 Ul pauiuapl sapou
3|qissaooe pue padiedw Jou Wol paulelqo s3aalqo
Aued pue $305[qo ejep wouy W)l elep 1an4suo)

uoneLwoul Alquissseal sy ul
paljiuapl sapou Aduaje| 31Samo| Wol) paulejqo spalqo
Aued pue $153[qo elep Wol) Wl Blep JoNsuo)

7€9—J 0

$108[qO 8] UIRIgO puB UOIBLLLIOJUI A|quUISSSead
SY3} Ul payiuapl SSpou jqissande pue paJdiedwi jou je
syalqo Aued pue s399[qo Blep 10 UOREDIO| BUILLIS]RQ

te9—/ i

uonewlolul
Alquiassead au) ul pauiuapl sapou Aduale)
I5om0| woly spaigo Ajued pue s1alqo eyep uielqo

0£9—/

7 ¢o|qIsse0e pue

029—/

ON . paJiedwi jou SSPON SaA

91—/ »

wieyl ejep ayj J1oj
spalqo AJued pue spalqo ejep ay3 uielqo 03 Jdwany

p19—/ 1

uonewoul Ajquiassead ayj 03 bunisyel Aq wal
elep 3yl JoNNSUCD 0] PoPasuU S3poU AJudje| 1Somo| 1e

sa(qo Ajued pue s1oalgqo ejep JO uoRedo| SUILLLISIR]

71—~/ 1

W2yl eyep e oy 3sanbas peas aAIdaY

0T9—/

US 9,223,654 B2

Sheet 7 of 10

Dec. 29, 2015

U.S. Patent

L 'Ol

/\Iomm auoz sbeiolg

@6-«

YOMIBN B3y SpIM

W

/\Iomm auoz abeiols

174

/Q{

oH / duoz 3belois

|

z0L
a(TTo)

(IOE ws3sAs sbeiols eyeq pajedday peInguIsiq JUSIISSY

US 9,223,654 B2

Sheet 8 of 10

Dec. 29, 2015

U.S. Patent

8 'Old

2U0Z XN

016 OL " isau0z 10 ////\/\/lﬁ

ON owm/)//\////w\\\\\

r8—/
I SIA

|
p=403s aq O3

SI LUSJ B1ep 243 YDIYM O] 2U0Z [BaJ 3] 4om
1 JI SB 3UOZ [enUIA dU3 0 W) ejep ay3 Jos
Adljod ayy 03 Buipaodoe suoiNsuUl Ajquissseal
pue s139(go Ajued ‘s1o3(qo elep syl 24015

zee—J

9UOZ |enMiA e sk suoz

9|qIsss20eul 243i 10 UOISJSA JeNLIA B s]kes)])

way eep ayi Joj Ajod ayy 01 Buipiodoe
2u0z 2HL103IS Y3 Ul SUOIPNISUL A|qUISSSE
pue s1a[gqo Ajued ‘s1oa(qo ejep aLp 240315

0£8—J

ON —— T T
o19—/ Tk

a|A\\\\\Mm_n__mmm8m owmm/w///vt

02s—/

- S3A

‘auoz Adus3e| 1S9MO| AL YIm
Buiaels ‘palols aq 03 SI Wy e1ep syl Yyaiym o} auoz sbelols yoes 104

crg—/ 0

pa.10)s aq 0}
SI W31 e3ep au3 YoIym 03 auoz abelols yoes 1oj Aduaje| ayj a3enjeal

18—/
09G WO

US 9,223,654 B2

Sheet 9 of 10

Dec. 29, 2015

U.S. Patent

6 ‘Dl

(owea) | AR

\\\\/// % Nvmlx\
oN =2 ¢SPUO0Z |enpiA Eow,_\\\uw ST

ova.N////W\\\\

BU0Z UOIjeunssp papusiul ayj o3
3UO0Z [BNIA 23U WO SUORINIISUl Ajquuasseal

3N JO JUNOWE pauLBp WS1SAS B JIepA _ pue sypalqo Aued ‘s103[qo ejep su) SA0K

0e6—J ﬁ i H 0z6—/
== ¢3|qISSaI0e auo7 M///

ON T B - SaA
16—t Tk

pa10ls Ajuesodwa]
u99q Ssey Wa}l e3ep ayj Ydiym 03 SU0Z |ENJIA LD 104

0T6—/
08 wo.d

US 9,223,654 B2

Sheet 10 of 10

Dec. 29, 2015

U.S. Patent

A

(CoegoL) (ozgoL)

3U0Z |enioe au)
10 20e|d Ul BUOZ |eNUIA AU}
ul sspou Buisn LpIm pasnoid

2201 —J
7 ¢auoz 3|qissaeul

. eWyJoyageiere - SIA
ON Te._euoz fenpip

0zoT—/

F\\\\\mw_g_mmmuum suo7

ON T

NHSIQ//»\\\

(#1901)

S3aA

‘pa1e20] 21e sa(qo

Aued pue syalqo ejep buliols sapou Ldiym Ul auoz abelols yoes 4o

010T—/
219 woid

0T 'Sid

US 9,223,654 B2

1
RESILIENT DISTRIBUTED REPLICATED
DATA STORAGE SYSTEM

RELATED APPLICATION INFORMATION

This patent is a continuation of U.S. application Ser. No.
14/136,254 filed Dec. 20, 2013 entitled RESILIENT DIS-
TRIBUTED REPLICATED DATA STORAGE SYSTEM,
now U.S. Pat. No. 8,843,447 issued Sep. 23, 2014, which is a
continuation in part of pending U.S. application Ser. No.
13/715,519 filed Dec. 14, 2012 entitled FAILURE RESIL-
IENT DISTRIBUTED REPLICATED DATA STORAGE
SYSTEM.

NOTICE OF COPYRIGHTS AND TRADE DRESS

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. This
patent document may show and/or describe matter which is or
may become trade dress of the owner. The copyright and trade
dress owner has no objection to the facsimile reproduction by
anyone of the patent disclosure as it appears in the Patent and
Trademark Office patent files or records, but otherwise
reserves all copyright and trade dress rights whatsoever.

BACKGROUND

1. Field

This disclosure relates to data stored in a distributed repli-
cated data storage system and an improved resilient method
for storing and accessing data in a distributed replicated data
storage system.

2. Description of the Related Art

A file system is used to store and organize computer data
stored as electronic files. File systems allow files to be found,
read, deleted, and otherwise accessed. File systems store files
on one or more storage devices. File systems store files on
storage media such as hard disk drives and silicon storage
devices.

Various applications may store large numbers of docu-
ments, images, audio, videos and other data as objects using
a distributed replicated data storage system in which data is
replicated and stored in at least two locations.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a distributed replicated data
storage system.

FIG. 2 is a block diagram of a storage zone included in a
distributed replicated data storage system.

FIG. 3 is a block diagram of an example fully replicated
distributed data storage system.

FIG. 4 is a block diagram of a first example resilient dis-
tributed replicated data storage system.

FIG. 5 is aflow chart of the actions taken to store or put data
in a resilient distributed replicated data storage system.

FIG. 6 is a flow chart of the actions taken to read or get data
included in a resilient distributed replicated data storage sys-
tem.

FIG. 7 is a block diagram of a second example resilient
distributed replicated data storage system.

FIG. 8 is a flow chart of additional actions taken to store or
put data in a resilient distributed replicated data storage sys-
tem.

FIG. 9 is a flow chart of the further additional actions taken
to store or put data in a resilient distributed replicated data
storage system.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 10 is a flow chart of additional actions taken to read or
get data included in a resilient distributed replicated data
storage system.

DETAILED DESCRIPTION
Environment

FIG. 1 is a block diagram of a distributed replicated data
storage system 100. The distributed replicated data storage
system 100 includes at least two storage zones. The distrib-
uted replicated data storage system 100 includes multiple
storage zones that are independent of one another, may be
geographically dispersed and are in a peer-to-peer configura-
tion. In the example shown, the distributed replicated data
storage system 100 includes two storage zones, first storage
zone 110 and second storage zone 120.

The storage zones 110 and 120 are separated geographi-
cally. The storage zones 110 and 120 communicate with each
other and share objects over wide area network 130. The wide
area network 130 may be or include the Internet. The wide
area network 130 may be wired, wireless, or a combination of
these. The wide area network 130 may be public or private,
may be a segregated network, and may be a combination of
these. The wide area network 130 includes networking
devices such as routers, hubs, switches and the like.

The term data as used herein includes a bit, byte, word,
block, stripe or other unit of information. In one embodiment
the data is stored within and by the distributed replicated data
storage system as objects. As used herein, the term data is
inclusive of entire computer readable files or portions of a
computer readable file. The computer readable file may
include or represent text, numbers, data, images, photo-
graphs, graphics, audio, video, computer programs, computer
source code, computer object code, executable computer
code, and/or a combination of these and similar information.

Many data intensive applications store a large quantity of
data, these applications include scientific applications, news-
paper and magazine websites (for example, nytimes.com and
life.com), scientific lab data capturing and analysis programs,
video and film creation software, and consumer web based
applications such as social networking websites (for example,
FACEBOOK), photo sharing websites (for example,
FLIKR), video sharing websites (for example, YOUTUBE)
and music distribution websites (for example, ITUNES).

FIG. 2 is ablock diagram of a storage zone 104 included in
a distributed replicated data storage system. The storage
zones 110 and 120 shown in FIG. 1 are examples of storage
zone 104. The storage nodes 150 within a storage zone 104
may be connected via a local area network 140 by wire lines,
optical fiber cables, wireless communication connections,
and others, and may be a combination of these. The local area
network 140 may include one or more networking devices
such as routers, hubs, switches and the like.

Referring again to FIG. 1, one node in one of the storage
zones may include an object management system and/or
application program that automatically identifies and adapts
to impairments in the storage nodes 150. That is, software in
a node in the storage zone 110 may monitor and recognize
multiple kinds of impairments, including, for example, stor-
age node failures; storage device failures; storage nodes with
diminished capacity such as one or more down or diminished
drives; storage devices with diminished capacity such as bad
blocks or sectors; other equipment failures; offline nodes;
offline storage devices; missing data; impaired data; and other
system anomalies. When the software in a node in the storage
zone recognizes an impairment, the distributed replicated

US 9,223,654 B2

3

data storage system may automatically adapt. In a related
embodiment, the distributed replicated data storage system
100 may include an application program that automatically
identifies impairments in constituent storage zones and takes
remedial action.

The storage zones 110, 120 and 104 may include a com-
puting device and/or a controller on which software may
execute. The computing device and/or controller may include
one or more of logic arrays, memories, analog circuits, digital
circuits, software, firmware, and processors such as micro-
processors, field programmable gate arrays (FPGAs), appli-
cation specific integrated circuits (ASICs), programmable
logic device (PLDs) and programmable logic array (PLAs).
The hardware and firmware components of the computing
device and/or controller may include various specialized
units, circuits, software and interfaces for providing the func-
tionality and features described herein. The processes, func-
tionality and features described herein may be embodied in
whole or in part in software which operates on a controller
and/or one or more computing devices and may be in the form
of one or more of firmware, an application program, object
code, machine code, an executable file, an applet, a COM
object, a dynamic linked library (DLL), a script, one or more
subroutines, or an operating system component or service,
and other forms of software. The hardware and software and
their functions may be distributed such that some actions are
performed by a controller or computing device, and others by
other controllers or computing devices within a storage zone.

A computing device as used herein refers to any device
with a processor, memory and a storage device that may
execute instructions such as software including, but not lim-
ited to, server computers, personal computers, portable com-
puters, and laptop computers. The computing devices may
run an operating system, including, for example, versions of
the Linux, Unix, MS-DOS, Microsoft Windows, Solaris,
Symbian, Android, Chrome, and Apple Mac OS X operating
systems. Computing devices may include a network interface
in the form of a card, chip or chip set that allows for commu-
nication over a wired and/or wireless network. The network
interface may allow for communications according to various
protocols and standards, including, for example, versions of
Ethernet, INFINIBAND® network, Fibre Channel, and oth-
ers. A computing device with a network interface is consid-
ered network capable.

Referring again to FIG. 2, the storage zone 104 includes a
plurality of storage nodes 150 which include a plurality of
storage media 160. Each of the storage nodes 150 may
include one or more server computers. Each of the storage
nodes 150 may be an independent network attached storage
(NAS) device or system. The term “storage media” is used
herein to refer to any configuration of hard disk drives, solid-
states drives, silicon storage devices, magnetic tape, or other
similar non-transitory storage media. Hard disk drives and/or
other storage media 160 may also be arranged in the storage
nodes 150 according to any of a variety of techniques.

The storage media included in a storage node may be of the
same capacity, may have the same physical size, and may
conform to the same specification, such as, for example, a
hard disk drive specification. Example sizes of storage media
include, but are not limited to, 2.5" and 3.5". Example hard
disk drive capacities include, but are not limited to, 500
Mbytes, 1 terabyte and 2 terabytes. Example hard disk drive
specifications include Serial Attached Small Computer Sys-
tem Interface (SAS), Serial Advanced Technology Attach-
ment (SATA), and others. An example storage node may
include 16 one terabyte 3.5" hard disk drives conforming to
the SATA standard. In other configurations, the storage nodes

10

15

20

25

30

35

40

45

50

55

60

65

4

150 may include more and fewer drives, such as, for example,
10, 12, 24 32, 40, 48, 64, etc. In other configurations, the
storage media 160 in a storage node 150 may be hard disk
drives, silicon storage devices, magnetic tape devices, or a
combination of these. In some embodiments, the physical
size of the media in a storage node may differ, and/or the hard
disk drive or other storage specification of the media in a
storage node may not be uniform among all of the storage
devices in a storage node 150.

The storage media 160 in a storage node 150 may be
included in a single cabinet, rack, shelf or blade. When the
storage media in a storage node are included in a single
cabinet, rack, shelf or blade, they may be coupled with a
backplane. A controller may be included in the cabinet, rack,
shelf or blade with the storage devices. The backplane may be
coupled with or include the controller. The controller may
communicate with and allow for communications with the
storage media according to a storage media specification,
such as, for example, a hard disk drive specification. The
controller may include a processor, volatile memory and non-
volatile memory. The controller may be a single computer
chip such as an FPGA, ASIC, PLD and PLA. The controller
may include or be coupled with a network interface.

In another embodiment, multiple storage nodes 150 are
included in a single cabinet or rack such that a storage zone
may be included in a single cabinet. When in a single cabinet
or rack, storage nodes and/or constituent storage media may
be coupled with a backplane. A controller may be included in
the cabinet with the storage media and/or storage nodes. The
backplane may be coupled with the controller. The controller
may communicate with and allow for communications with
the storage media. The controller may include a processor,
volatile memory and non-volatile memory. The controller
may be a single computer chip such as an FPGA, ASIC, PLD
and PLA.

The rack, shelf or cabinet containing a storage zone may
include a communications interface that allows for connec-
tion to other storage zones, a computing device and/or to a
network. The rack, shelf or cabinet containing a storage node
150 may include a communications interface that allows for
connection to other storage nodes, a computing device and/or
to a network. The communications interface may allow for
the transmission of and receipt of information according to
one or more of a variety of standards, including, but not
limited to, universal serial bus (USB), IEEE 1394 (also
known as FIREWIRE® and [.LINK®), Fibre Channel, Eth-
ernet, WilFi (also known as IEEE 802.11). The backplane or
controller in a rack or cabinet containing a storage zone may
include a network interface chip, chipset, card or device that
allows for communication over a wired and/or wireless net-
work, including Ethernet. The backplane or controller in a
rack or cabinet containing one or more storage nodes 150 may
include a network interface chip, chipset, card or device that
allows for communication over a wired and/or wireless net-
work, including Ethernet. In various embodiments, the stor-
age zone, the storage node, the controller and/or the back-
plane may provide for and support 1, 2, 4, 8, 12, 16, etc.
network connections and may have an equal number of net-
work interfaces to achieve this.

The techniques discussed herein are described with regard
to storage media including, but not limited to, hard disk drives
and solid-state drives. The techniques may be implemented
with other readable and writable storage media.

As used herein, a storage device is a device that allows for
reading from and/or writing to a storage medium. Storage
devices include hard disk drives (HDDs), solid-state drives
(SSDs), DVD drives, flash memory devices, and others. Stor-

US 9,223,654 B2

5

age media include magnetic media such as hard disks and
tape, flash memory, and optical disks such as CDs, DVDs and
BLU-RAY® discs.

In some embodiments, files and other data may be parti-
tioned into smaller portions and stored as multiple objects
among multiple storage media 160 in a storage node 150.
Files and other data may be partitioned into smaller portions
referred to as objects and stored among multiple storage
nodes 150 in a storage zone. In one embodiment each object
includes a storage policy identifier and a data portion. The
object including its constituent data portion is stored among
storage nodes and storage zones according to the storage
policy specified by the storage policy identifier included in
the object. Various policies may be maintained and distrib-
uted or known to the nodes in all zones in the distributed
replicated storage system. Policies define the replication and
placement of data objects in the data storage system. Example
policies include, full distribution, single copy, single copy to
a specific zone, copy to all zone but a specified zone, and
others. The policies may be stored on and distributed from a
client 102 to the distributed replicated storage system 100 to
all nodes in the storage system. A character (e.g., A, B, C, etc.)
or number (0, 1, 2, etc.) or combination of one or more
characters and numbers (Al, AAA, A2, BC3, etc.) or other
scheme may be associated with and used to identify each of
the policies. The client 102 of the storage system 100 may be
a computing device such as, for example, a personal com-
puter, tablet, mobile phone, workstation or server.

Referring again to FIG. 1, the wide area network 130
connects geographically separated storage zones. Each of the
storage zones includes a local area network 140. The transfer
of data between storage nodes in a storage zone is fast com-
pared to communication over the wide area network 130.

Referring now to FIG. 3, a fully replicated distributed data
storage system 300 is shown. In this configuration, all data is
replicated among all storage zones such that all copies of
stored data are available from and accessible from all storage
zones. This is referred to herein as a fully replicated storage
system. As shown, a data item is partitioned into data objects
D1 through D9. All data objects D1 through D9 are available
in all three of storage zones 310, 320 and 330. The data item
stored as data objects D1 through D9 may represent one
movie, one audio file, or any portion, full or partial, of any
data. In a fully replicated storage system, all stored data is
accessed from any or all of the storage zones based on various
system rules. In a fully replicated configuration, the storage
zones 310, 320 and 330 are replicated such that copies of data
in all three storage zones are the same. Replication may be
performed synchronously, that is, completed before the write
operation is acknowledged; asynchronously, that is, the rep-
licas may be written before, after or during the write of the
first copy; or acombination of each. Full replication can result
in increased storage costs, particularly when there are mul-
tiple zones and all data is replicated at all zones. Although this
configuration provides for resiliency, it may be costly mon-
etarily and may be too costly monetarily for some. That is, the
monetary cost of the constituent storage media required for
full replication may be too high.

In the resilient distributed replicated data storage system
described herein, when writing data to a storage zone, the data
may be replicated in one or more additional storage zones to
provide for redundancy such that access to data is possible
when a zone goes down or is impaired or unreachable, with-
out the need for full replication. The resilient replication
system does not require that each zone have a full copy of all
data objects. The techniques described herein result in a lower
cost resilient data storage system.

10

15

20

25

30

35

40

45

50

55

60

65

6

The lower cost is achieved through the use of smaller
capacity storage zones (and fewer or smaller capacity storage
devices in those storage zones). Because of the monetary cost
of data storage devices, the resilient replication system
described herein reduces the amount of data stored, requiring
a smaller storage capacity which reduces storage media costs.

Referring now to FIG. 4, a resilient distributed replicated
storage system 400 is shown. The resilient distributed repli-
cated data storage system 400 includes multiple storage zones
that are independent of one another, are geographically dis-
persed and are in a peer-to-peer configuration. A client com-
puting device 402 may be used to specify the configuration of
the distributed replicated storage system 400 and may pro-
mulgate policies or storage criteria for the nodes in the system
400. In this example, a data item is partitioned into nine
pieces, data objects D1 through D9. Data objects D1, D2 and
D3 are stored in storage zone 410, data objects D4, D5 and D6
are stored in storage zone 420, and data objects D7, DS and
D9 are stored in storage zone 430. Should one of the storage
nodes in one of the storage zones become impaired, become
unavailable, become inaccessible or go down, the system may
recreate the data by using available data objects along with
parity objects. When the data objects for the data item are
distributed among the three zones, the system creates six
parity objects P1 through P6. The system also creates reas-
sembly instructions. The reassembly instructions, shown as R
in a triangle in FIG. 4, provide information about how to
recreate, reassemble or reconstitute the data item from (in this
example, any nine of) the constituent data objects and parity
objects. The reassembly instructions include which combina-
tions of objects are needed to reassemble the data item. The
reassembly instructions take up very little storage space. The
same reassembly instructions are included in each zone. In
this example, there are nine data objects and six parity
objects. To recreate the data, a combination of any nine
objects is needed. That is, for example, to recreate the data
item, six data objects and three parity objects may be used.
This would be the situation if one of the three storage zones
shown in FIG. 4 cannot be used or accessed to recreate the
data item. That is, for example, if zone 420 is down or inac-
cessible, the data objects D1, D2, D3, D6, D7, D8 and parity
objects P1, P2, PS5 from zones 410 and 430 may be used to
recreate the data item.

The creation of parity objects may be based upon a number
of well-known erasure coding techniques. In one embodi-
ment, the parity objects are created with the Reed-Solomon
technique. See James S. Plank “Erasure Codes for Storage
Applications,” Tutorial, FAST-2005: 4th Usenix Conference
on File and Storage Technologies San Francisco, Calif.,
December, 2005 and James S. Plank, “A Tutorial on Reed-
Solomon Coding for Fault-Tolerance in RAID-like Systems,”
Software—Practice & Experience, 27(9), September, 1997,
pp. 995-1012.

The property of interest for such erasure coding techniques
is the ability to repair the loss of data objects with an equal
number of parity objects using the technique. For example,
the calculation of parity can be used as a simple erasure code.
Consider the 8 bit string “100111007, with the addition of the
parity bit of “1” (even parity). If the system presents the string
“1001X100” with the parity bit of “1” and the parity coding is
known to be even, the receiver can infer that the missing bit
“X” is a “1”. This technique can be generalized to correct as
many errors in the stored data as there are parity. The system
and methods described herein are dependent on this general
property of parity erasure codes and not a specific algorithm
or implementation.

US 9,223,654 B2

7

Referring to the examples shown in FIGS. 3 and 4, as the
data item was partitioned into nine objects, in the fully repli-
cated storage system 300 of FIG. 3, the amount of storage
space required for a three zone system would be three times
the size of the data. According to the resilient distributed
replicated storage system described herein, a zone would
have enough storage space for five objects and a small amount
of storage space for reassembly instructions. The example
resilient distributed replicated storage system 400 of FIG. 4
requires less than two-thirds of the capacity of the fully rep-
licated storage system 300 of FIG. 5 while providing for
resiliency and access to data. The one-third reduction in stor-
age needed may result in significant monetary cost savings
while providing the user a desired level of resiliency and
accessibility.

The software running on a controller or computing device
in storage zone 410 may monitor the health of the other
storage zones 420 and 430 and/or the storage media in the
storage zones 420 and 430. When an impending or actual
problem or failure is detected in the storage zones 420 or 430,
the storage zone 410 may identify this situation as an access
alert. After identifying an access alert, the system uses data
objects and parity objects to recreate the data according to the
reassembly instructions. The access alert may be identified by
a node, and the node may use the reassembly instructions to
reassemble the data item by sending requests for data objects
and parity objects to other nodes in other zones, if necessary.

In this way a customer of the resilient distributed replicated
data storage system may receive the reliability or service level
desired or required from a fully replicated storage system at a
much lower cost.

The example shown in and described regarding FIG. 4
involves three storage zones and a single data item partitioned
into nine objects. The techniques described herein apply to
storage systems with multiple storage zones, regardless of the
number of storage zones. The techniques described herein
apply to any sized data item. The techniques described herein
apply to systems with multiple data items. The techniques
described herein require that the total number of data objects
and parity objects can be divided evenly among the zones in
the particular configuration of the resilient distributed repli-
cated data storage system. The techniques described herein
optionally allow for multiple copies of data objects and parity
objects to be stored to meet the divided equally requirement
among storage zones as well as to increase the resiliency of
the stored object.

Description of Processes

The method used in the intelligent distributed replicated
data storage system may be described as taking a data item,
partitioning it into pieces known as data objects and calculat-
ing parity information known as parity objects along with
reassembly instructions. The system allows for the spreading
of data objects and parity objects among multiple storage
zones to meet the availability and durability requirements of
a particular application or customer. The spreading of the
objects among zones is performed so that the durability of the
data item is ensured. The number of data objects and parity
objects is chosen to map onto the number of zones provided
and the required durability. The system may duplicate parity
and data objects to increase the resiliency of the stored item
according to the policy requirements.

Referring now to FIG. 5, a flow chart ofthe actions taken to
store or put data in a resilient distributed replicated data
storage system is shown. To store or put a data item, the
system receives a storage request that includes a data item (or
reference or link to a data item) and may include storage
criteria, as shown in block 510. The storage criteria may, in

10

15

20

25

30

35

40

45

50

55

60

65

8

different embodiments specify the storage policy for the data
item by a code or name, or may include specific distribution
instructions for the data item. The specific distribution
instruction may include the exact number of data objects and
parity objects the data item for the data item. In one imple-
mentation, the system predetermines the number of pieces the
item data should be partitioned into according to information
provided by the user of the system, and all data items are
partitioned the same way. The number of pieces may be
determined in part based on the storage criteria specified. The
number of pieces is dependent on multiple factors, including
the number of zones in the storage system, the specified or
desired durability/resiliency of the system, and the desired
speed of access to the data item. To increase the resiliency of
the storage system, multiple copies of the data objects or
parity objects may be dispersed among the storage zones. The
number of parity objects may be determined in part based on
the storage criteria specified. The number of parity objects is
determined based on the number of pieces and the erasure
coding technique used. The system may provide a user inter-
face that allows the user to specify information for these
factors by allowing for explicit entry of numbers (in text or
numerical entry fields, radio button with associated text
guides, and/or pull down menus), selection of factors by radio
button, slider or other user interface item (such as, for
example, a sliding scale for each of access speed, resiliency/
durability). The number of pieces evaluation may be per-
formed once during a system install, and may later be recal-
culated upon a system reconfiguration, such as adding or
removing a zone, or changing of a desired access speed or
resiliency. In another implementation, the number of pieces a
data item is to partitioned into may be hard coded or system
defined.

The system then partitions the data item into data objects
corresponding to the number of pieces, as shown in block
520. The system also creates parity objects for the data item,
as shown in block 530. The partitioning into data objects and
creating parity objects is achieved according to erasure cod-
ing techniques by one or more nodes in a zone in the distrib-
uted replicated data storage system.

According to erasure coding, the data item is divided into n
pieces and recoded into n+p total objects, namely n data
objects and p parity objects, such that there will be t total
objects. According to erasure coding, t>n>p. The key prop-
erty of erasure coding is that the original item can be recon-
structed from any n objects from the combination of data
objects and parity objects, where the combined size for the n
objects is equal or greater than the original data item size. For
example, referring to FIG. 4, when the data item is partitioned
into nine data objects n and four parity objects p, the total
number of objects t is 10 and the number of objects needed to
recreate the original data item is n or nine. The erasure coding
used may be according to the Reed-Solomon techniques or
other suitable techniques.

The system then creates reassembly instructions for the
dataitem, as shown in block 540. The reassembly instructions
include information about the data objects and the parity
objects including their object identifiers that encode the loca-
tion of the object.

The system then stores the data objects, parity objects and
reassembly instructions in the current storage zone, as shown
in block 550. The system stores the data objects, parity
objects and reassembly instructions among the other storage
zones according to the policy for the data item, as shown in
block 560. In one embodiment the system performs the
actions in blocks 550 and 560 concurrently when synchro-
nized replication is required. The system performs the actions

US 9,223,654 B2

9

in blocks 550 and 560 sequentially when asynchronous rep-
lication is sufficient. The system stores the data objects, parity
objects and reassembly instructions among the storage zones
so that when one zone goes down, the system can still provide
the data item when requested. In one implementation, the data
objects are spread evenly among the storage zones, and there
is at least one parity object per storage zone. A copy of the
reassembly instructions is stored in every storage zone; the
reassembly instructions are the same in each storage zone.

In another version of the system, actions may be taken to
avoid blocking, delays or other problems stemming from a
disconnected, unavailable or otherwise inaccessible zone. For
example, referring to FIG. 4, if storage zone 420 is inacces-
sible, rather than blocking or waiting for storage zone 420 to
become available, the system would create a virtual copy of
the objects and other pertinent information intended for the
inaccessible storage zone (420) as a virtual zone at another
storage zone, for example, in storage zone 410. FIG. 8 is a
flow chart of additional actions taken to store or put datain a
resilient distributed replicated data storage system. FIG. 9 is
a flow chart of further additional actions taken to store or put
data in a resilient distributed replicated data storage system,
and is a continuation of FIG. 8.

Referring to FIG. 8, after or as part of initiating storing the
data objects, parity objects and reassembly instructions
among storage zones according to the policy for the data item
as shown in block 560 of FIG. 5, the system valuates the
latency for each storage zone to which the data item is to be
stored, as shown in block 812. As used herein latency means
the amount of time to transmit or transfer data from a first
location to a second location, namely from a current zone to
another zone. In some embodiments, a round trip latency may
be used. For each storage zone to which the data item is to be
stored, starting with the lowest latency zone, the system
evaluates whether the zone is accessible, as shown in blocks
812 and 816. This may be done by pinging the zone or
otherwise communicating with the zone. When the zone is
accessible, the system stores the data objects, parity objects
and reassembly instructions in the storage zones according to
the policy for the data item, as shown in block 820.

When the zone is inaccessible, the system creates a virtual
version of the inaccessible zone as a virtual zone, as shown in
block 830. The system stores the data objects, parity objects
and reassembly instructions according to the policy for the
data item to the virtual zone as if it were the real zone to which
the data item is to be stored, as shown in block 832. This
continues for each zone in lowest latency order. Specifically,
a check is made to determine whether there are more zones to
which the data is to be stored, as shown in block 840. If there
are more zones, the next (lowest latency) zone is selected, as
shown in block 842, and the flow of actions continues at block
816. If storage has been completed to all zones (both virtual
and real), the flow of actions continues at bock 910 of FIG. 9.

After the data item has been stored to real and virtual zones
pursuant to the policy for the data item, any objects stored in
virtual zones need to be moved to and stored to the intended
destination zone according to the policy for the data item.
This may be achieved according to the actions described
regarding FIG. 9. Referring now to FIG. 9, continuing from
bock 840 of FIG. 8, for each virtual zone to which the data
item has been temporarily stored, a check is made to learn
whether the zone associated with the virtual zone is acces-
sible, as shown in blocks 910 and 912. This may be done by
pinging the zone or otherwise communicating with the zone.
If the real zone is accessible, the system moves the data
objects, parity objects and reassembly instructions from the
virtual zone to the intended destination zone, as shown in

10

20

25

30

35

40

45

50

55

60

65

10

block 920. If the real zone remain inaccessible, as shown in
block 912, the system wait a system defined amount of time
before checking for that zone again, as shown in block 930.
After blocks 920 and 930, the system checks whether there
are any further virtual zones (including the just checked
zone), as shown in block 940. If there are virtual zones still in
use, the next (or same when only one) virtual zone is selected,
as shown in block 924, and the flow of actions continues at
block 912 where a check is made to learn whether the real
zone corresponding to the currently selected virtual zone is
accessible. If there are no virtual zones in use, as shown in
block 940, the flow of actions ceases.

Referring now to FIG. 6, a flow chart of the actions taken to
read or get data included in a resilient distributed replicated
data storage system is shown. The system receives a read
request for a data item, as shown in block 610. The system
determines the location of data objects and party objects at
lowest latency nodes needed to construct the data item by
referring to the reassembly information, as shown in block
612. That is, the system retrieves and reviews the reassembly
information to locate sufficient objects to reconstruct the
requested data item by referring to a latency map. The system
attempts to reconstruct the data item as quickly as possible.

Each node as it operates tracks the time it takes for opera-
tions with other nodes. This information about timing con-
cerning operations with other nodes is stored in a list of nodes
that includes the historical time to reach other nodes or per-
form operations involving other nodes. This list of nodes and
times may be referred to as a latency map or map of latencies.

When attempting to reconstruct the data item as quickly as
possible, the system may refer to the map of latencies to other
nodes in the system. The object identifier includes the nodes
where each object may be located. The system uses these two
pieces of information, the node and the latency to the node, to
attempt to retrieve sufficient objects to reconstruct the item in
the shortest time. The system then attempts to obtain the data
objects and parity objects for the data item, as shown in block
614.

Ifone or more lowest latency nodes at which data objects or
parity objects are stored are either impaired or inaccessible as
shown in block 616, the system determines the location of
data objects and parity objects at not impaired and accessible
nodes needed to construct the data item by referring to the
reassembly information and obtains the objects, as shown in
block 630. These may be referred to as alternate nodes, that is,
the nodes that are not lowest latency but that are not impaired
and are available. The system constructs the data item from
data objects and parity objects obtained from not impaired
and accessible nodes identified in the reassembly informa-
tion, as shown in block 632, that is, the alternate nodes. The
system then constructs the data item from data objects and
parity objects obtained from nodes identified in the reassem-
bly information, as shown in block 632. The system provides
the requested data item to the requester, as shown in block
650.

When the system attempts to obtain the data objects and
parity objects for the data item and all the nodes at which the
data objects are stored are not impaired and accessible, the
system obtains the data objects from lowest latency nodes
identified in the reassembly information, as shown in block
620. The system then constructs the data item from data
objects and parity objects obtained from nodes identified in
the reassembly information, as shown in block 622. The sys-
tem provides the requested data item to the requester, as
shown in block 640.

When the system includes the use of virtual zones when
intended storage zones are inaccessible, the actions described

US 9,223,654 B2

11

in FIG. 6 may be augmented to include the actions described
in FIG. 10. Referring to FIG. 10, after block 612 of FIG. 6, for
each storage zone in which nodes storing data objects and
parity objects are located, a check is made to learn whether the
zone is accessible, as shown in block 1012. If the zone is
accessible, the flow of actions returns to block 614 in FI1G. 4,
described above. If the zone is inaccessible, a check is made
to learn whether there is a virtual zone available for the
inaccessible zone, as shown in block 1020. If there is no
virtual zone available, the flow of actions resumes at block
630 of FIG. 6, described above. If a virtual zone is available
for the inaccessible zone, the system proceeds with using
nodes in the virtual zone in place of the actual zone, as shown
in block 1022. The flow of actions continues at block 620 of
FIG. 6.

Alternatively a check may be made whether any of the
zones where the data is stored are stored as virtual zones, and
if so, the system proceeds with using nodes in the virtual zone
in place of the actual zone.

The methods described above and shown in FIGS. 5, 6, 8,
9 and 10 may be performed by and managed by a node
included in a zone in a distributed replicated data storage
system in which the independent nodes communicate with
each other in a peer to peer manner. In another embodiment,
the methods described above and shown in FIGS. 5, 6, 8, 9
and 10 may be performed by and managed by an independent
computing device or controller in a storage zone in a resilient
distributed replicated data storage system.

To make the system described herein more resilient and
more responsive, a local parity object (or objects) may be
created at each zone to assist in recreating any one object in
the zone that may not be accessible. For example, if the data
objects and parity objects from a zone are needed and one of
the parity objects or data objects is on a node or drive that is
down, the inaccessible object can be created locally using a
locally stored parity object (or objects). This configuration
adds another layer of resiliency and reliability to the system.

Referring now to FIG. 7, a block diagram of a second
example resilient distributed replicated data storage system
700 is shown. In the resilient distributed replicated data stor-
age system 700, a local parity object is created and stored in
each zone so that if an object stored in that zone is not
accessible, it may be recreated locally. The use of local parity
objects (L1, L2 and [.3 as shown) increases the resiliency and
data throughput of the system by alleviating the need to
access objects from other zones to recreate an inaccessible
object. In this example, a data item is partitioned into nine
pieces, data objects D1 through D9. Data objects D1, D2 and
D3 are stored in storage zone 710, data objects D4, D5 and D6
are stored in storage zone 720, and data objects D7, D8 and
D9 are stored in storage zone 730. Should one of the storage
zones or a node within a zone become impaired, become
unavailable, become inaccessible or go down, the system may
recreate the data by using available data objects along with
parity objects. When the data objects for the data item are
distributed among the three zones, the system creates six
parity objects P1 through P6. In this extra resilient configu-
ration, the system also creates a local parity object for each
zone. The local parity objects are created using Reed-So-
lomon erasure coding or any suitable erasure coding scheme.
As shown, the system creates local parity object L1 for zone
710 based on the data objects D1, D2, D3 and parity objects
P1, P2 included in the zone. As shown, the system creates
local parity object L2 for zone 720 based on the data objects
D4, D5, D6 and parity objects P3, P4 included in the zone. As

20

25

40

45

55

12

shown, the system creates local parity object L3 for zone 730
based on the data objects D7, D8, D9 and parity objects P5, 62
included in the zone.

The system also creates reassembly instructions. The reas-
sembly instructions, shown as R in a triangle in FIG. 7,
provide information about how to recreate, reassemble or
reconstitute the data item from (in this example, any nine of)
the constituent data objects and parity objects. In this con-
figuration, the reassembly instructions also include informa-
tion needed to recreate an object inaccessible within a storage
zone using a local parity object. The reassembly instructions
take up very little space and are small in size. In one embodi-
ment, the same reassembly instructions are included in each
zone, and a separate local reassembly instruction object is
also provided. In another embodiment, the system reassem-
bly instructions are augmented with local reassembly instruc-
tions such that the reassembly instruction object is different
for each zone.

When local parity objects are used, the flow of actions to
store a data item shown in FIG. 5 is augmented by adding
creating a local parity object or local parity objects between
blocks 540 and 550. In addition, the creating reassembly
instructions for the data item in block 550 may include cre-
ating assembly instructions for objects in each of the zones
based on the local parity object or objects.

When local parity objects are used, the flow of actions to
read or get a data item shown in FIG. 6 is augmented by
adding identifying an inaccessible or corrupted drive or
object in a node in the zone, and locally recreating the inac-
cessible object using the local parity object (or objects)
according to local zone reassembly instructions. These
actions may be taken between blocks 614 and 616, such that
the node determines all nodes are not impaired. In this way, a
local reconstituted version of the object is obtained from the
local zone without having to seek the object from a node in a
different zone. This results in increased throughput and effi-
ciency of the system and adds a level of resiliency to the
system.

Closing Comments

Throughout this description, the embodiments and
examples shown should be considered as exemplars, rather
than limitations on the apparatus and procedures disclosed or
claimed. Although many of the examples presented herein
involve specific combinations of method acts or system ele-
ments, it should be understood that those acts and those
elements may be combined in other ways to accomplish the
same objectives. With regard to flowcharts, additional and
fewer steps may be taken, and the steps as shown may be
combined or further refined to achieve the methods described
herein. Acts, elements and features discussed only in connec-
tion with one embodiment are not intended to be excluded
from a similar role in other embodiments.

As used herein, “plurality” means two or more.

Asused herein, a “set” of items may include one or more of
such items.

As used herein, whether in the written description or the
claims, the terms “comprising”, “including”, “carrying”,
“having”, “containing”, “involving”, and the like are to be
understood to be open-ended, i.e., to mean including but not
limited to. Only the transitional phrases “consisting of” and
“consisting essentially of”, respectively, are closed or semi-
closed transitional phrases with respect to claims.

Use of ordinal terms such as “first”, “second”, “third”, etc.,
“primary”, “secondary”, “tertiary”, etc. in the claims to
modify a claim element does not by itself connote any prior-
ity, precedence, or order of one claim element over another or
the temporal order in which acts of a method are performed,

US 9,223,654 B2

13

but are used merely as labels to distinguish one claim element
having a certain name from another element having a same
name (but for use of the ordinal term) to distinguish the claim
elements.

As used herein, “and/or” means that the listed items are
alternatives, but the alternatives also include any combination
of the listed items.

It is claimed:

1. A system comprising:

a plurality of storage zones, each storage zone comprising
a plurality of nodes wherein each node comprises a
plurality of storage devices and a controller, the control-
ler including a processor and memory

afirst node of a plurality of nodes included in a first zone of
the plurality of zones, the first node having instructions
stored thereon which when executed cause a first pro-
cessor included in a first controller in the first node to
perform actions including:
receiving a storage request from a client of the system to

store a data item;
partitioning the data item into a plurality of data objects,
each object including a storage policy identifier and a
data portion;
creating a plurality of parity objects for the data item;
creating reassembly instructions for the data item;
storing groups of some of the data objects and groups of
some of the parity objects and the reassembly instruc-
tions among the nodes included in the storage zones
according to a predetermined set of criteria, the stor-
ing including
evaluating a latency for each storage zone to which the
data item is to be stored,
performing the storing in lowest latency order,
evaluating each storage zone to determine whether the
storage zone is accessible,
when one of the storage zones is not accessible, cre-
ating a virtual zone in the first zone to store the data
objects, parity objects and reassembly instructions
intended for the inaccessible storage zone;
receiving a read request for the data item;
obtaining data objects and parity objects to reconstruct
the data item from lowest latency nodes, including
when one of the storage zones having storage nodes
where the data objects and parity objects to recon-
struct the data item are stored are inaccessible,
using the virtual zone in place of the inaccessible
zone to obtain the data objects and parity objects;
providing the requested data item to a requester.

2. The system of claim 1 wherein the storing further com-

prises:

checking whether the storage zone corresponding to the
virtual zone is accessible

when the storage zone corresponding to the virtual zone
remains inaccessible, waiting a system defined amount
of time

repeating the checking and the waiting until the storage
zone corresponding to the virtual zone becomes acces-
sible

when the storage zone corresponding to the virtual zone is
accessible, moving the data objects, parity objects and
reassembly instructions from the virtual zone to the
intended storage zone.

3. The system of claim 1 wherein the storage devices are

selected from the group including hard disk drives and solid
state storage devices.

10

15

20

25

30

35

40

45

50

55

60

65

14

4. The system of claim 1 wherein the partitioning the data
item partitions the data item into data objects wherein some of
the data objects are duplicated among the storage zones.

5. The system of claim 1 wherein the partitioning the data
item partitions the data object into data items that are equally
divided among the storage zones.

6. The system of claim 1 wherein the partitioning the data
item partitions the data object into data items that are
unequally divided among the storage zones.

7. The system of claim 1 wherein the creating the parity
objects creates parity objects wherein some of the parity
objects are duplicated among the storage zones.

8. The system of claim 1 wherein the creating the parity
objects creates parity objects that are equally divided among
the storage zones.

9. The system of claim 1 wherein the creating the parity
objects creates parity objects that are unequally divided
among the storage zones.

10. The system of claim 1 wherein the obtaining data
objects and parity objects to reconstruct the data item from
lowest latency nodes further includes

checking whether any storage zones having storage nodes

where the data objects and parity objects to reconstruct
the data item are stored are inaccessible.

11. The system of claim 1 wherein obtaining data objects
and parity objects to reconstruct the data item from lowest
latency nodes further includes:

when the lowest latency nodes are not impaired and acces-

sible, constructing the data item from the data objects
and parity object at the lowest latency nodes according
to the reassembly instructions

when one of the lowest latency nodes is either impaired or

not accessible, constructing the data from the data
objects and parity objects obtained from alternative
nodes according to the reassembly instructions

using a local parity object to allow for recreation of an

inaccessible or corrupted one of the parity objects in the
group of parity objects or one of the data objects in the
group of data objects.

12. The system of claim 1 wherein when one of the lowest
latency nodes is either impaired or not accessible, reconsti-
tuting the node that is either impaired or not accessible using
a local parity object according to local reassembly instruc-
tions included in the reassembly instructions.

13. A system comprising:

a plurality of storage zones, each storage zone comprising

a plurality of storage nodes wherein each storage node
comprises a plurality of storage devices and a controller,
the controller including a processor and memory

a first node of a plurality of nodes included in a first zone of

the plurality of zones, the first node having instructions

stored thereon which when executed cause a first pro-

cessor included in a first controller in the first node to

perform actions including:

receiving a storage request from a client of the system to
store a data item, the storage request including (a) the
data item or a data item reference and (b) a storage
criteria;

partitioning the data item into a plurality of data objects,
each object including a storage policy identifier and a
data portion according to the storage criteria;

creating a plurality of parity objects for the data item
according to the storage criteria;

creating reassembly instructions for the data item
according to the storage criteria;

storing the data objects and the parity objects for the data
item among the nodes among the storage zones

US 9,223,654 B2

15

according to the storage criteria and storing the reas-
sembly instructions among the storage nodes among
the storage zones, the storing including
evaluating a latency for each storage zone to which the
data item is to be stored,
performing the storing in lowest latency order,
evaluating each storage zone to determine whether the
storage zone is accessible,
when one of the storage zones is not accessible, cre-
ating a virtual zone in the first zone to store the data
objects, parity objects and reassembly instructions
intended for the inaccessible storage zone;
receiving a read request for the data item;
obtaining data objects and parity objects to reconstruct
the data item from lowest latency nodes, including
when one of the storage zones having storage nodes
where the data objects and parity objects to recon-
struct the data item are stored are inaccessible,
using the virtual zone in place of the inaccessible
zone to obtain the data objects and parity objects;
providing the requested data item to a requester.

14. The system of claim 13 wherein the storing further
comprises:

checking whether the storage zone corresponding to the

virtual zone is accessible

when the storage zone corresponding to the virtual zone

remains inaccessible, waiting a system defined amount
of time

repeating the checking and the waiting until the storage

zone corresponding to the virtual zone becomes acces-
sible

when the storage zone corresponding to the virtual zone is

accessible, moving the data objects, parity objects and
reassembly instructions from the virtual zone to the
intended storage zone.

15. The system of claim 13 wherein the storage devices are
selected from the group including hard disk drives and solid
state storage devices.

16. The system of claim 13 wherein the storage criteria
specify whether the data objects and the parity objects should

10

15

20

25

30

35

16

be equally divided among the storage zones, unequally
divided among the storage zones, and duplicated among the
storage zones.

17. The system of claim 13 wherein the storage criteria
specify redundancy, latency, and/or resiliency characteristics.

18. The system of claim 13 wherein the storage criteria
include designated placement for the data objects and the
parity objects among the storage zones.

19. The system of claim 13 wherein the storage criteria are
designations of redundancy, latency, and/or resiliency char-
acteristics that are processed to determine the distribution of
the data objects and the parity objects among the storage
zones.

20. The system of claim 13 wherein obtaining data objects
and parity objects to reconstruct the data item from lowest
latency nodes includes

checking whether any storage zones having storage nodes

where the data objects and parity objects to reconstruct
the data item are stored are inaccessible.

21. The system of claim 13 wherein the obtaining further
comprises:

when the lowest latency nodes are not impaired and acces-

sible, constructing the data item from the data objects
and parity object at the lowest latency nodes according
to the reassembly instructions

when one of the lowest latency nodes is either impaired or

not accessible, constructing the data from the data
objects and parity objects obtained from alternative
nodes according to the reassembly instructions

using a local parity object to allow for recreation of an

inaccessible or corrupted one of the parity objects in the
group of parity objects or one of the data objects in the
group of data objects.

22. The system of claim 13 wherein when one of the lowest
latency nodes is either impaired or not accessible, reconsti-
tuting the node that is either impaired or not accessible using
a local parity object according to local reassembly instruc-
tions included in the reassembly instructions.

#* #* #* #* #*

